STRUCTURE OF OPHIORINES A AND B; NOVEL TYPE GLUCO INDOLE ALKALOIDS ISOLATED FROM OPHIORRHIZA SPP.

Norio Aimi,^{*} Tadashi Tsuyuki, Hiroshi Murakami, Shin-ichiro Sakai and Joju Haginiwa Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi cho, Chiba 260, Japan

Abstract: Two novel type gluco indole alkaloids, ophiorines A and B, were found in Rubiaceous plants, *Ophiorrhiza japonica* Bl. and *O. kuroiwai* Mak., and their structures were elucidated by chemical and spectroscopical methods.

In 1967, Fujita et al.¹⁾ reported the isolation of harman from *Ophiorrhiza japonica* Bl. We were interested in a closer investigation of the constituents of this plant, since recently pharmacologically active alkaloids were isolated from the same genus.²⁾

The extract of the leaves of *O*. *japonica* was partitioned between chloroform and water. From the water layer two novel betaine type indole alkaloids, ophiorines A ($\frac{1}{2}$) and B ($\frac{2}{2}$), were isolated. The same alkaloids, accompanied with several other constituents,³ were also found in *O*. *kuroiwai* Mak. which grows in Ishigaki and other south-west islands of Okinawa Prefecture.

Ophiorine A (1) was isolated as pale yellow needles, mp 217-219°C, $[\alpha]_D$ +51.0°. The UV spectrum having the absorption maxima at 254, 310 and 365 nm indicated the β -carbolinium chromophore. Addition of alkali caused the expected shifts to the absorption of anhydrobase (λ_{max} 284, 324, 331 and 425 nm).⁴) The FAB-MS data (m/z 513, M⁺+1) and the elemental analysis proved its molecular formula to be $C_{26}H_{28}O_{9}N_{2}$.

The ¹H-NMR spectrum (D₂O) of (1) showed two protons of C-ring of β -carboline at δ 8.47 (H-5) and δ 8.26 (H-6) along with four aromatic protons on the A ring at δ 7.98 (H-9), δ 7.28 (H-10), δ 7.62 (H-11) and δ 7.45 (H-12). Three protons on a vinyl side chain were observed at δ 5.45 (H-18a), δ 5.46 (H-18b) and δ 5.98 (H-19). The unomeric proton, H-1', was observed at δ 4.55 as a doublet with a coupling constant of 7.9 Hz, indicating β -configuration of the glycosidic linkage. The acetal structure of the aglycone side was proved by another acetal proton at δ 4.72 as a doublet. The coupling constant, J=9.9 Hz, demonstrated trans diaxial arrangement between H-21 and H-20. A characteristically highly deshielded signal was observed at δ 6.67 as a broad singlet. This signal was assignable to H-17, the proton on a carbon holding both a positively charged nitrogen and an ethereal oxygen. (Table 1).

The ¹³C-NMR of (1) was measured in D₂O. (Table 2). The composing sugar was clearly demonstrated to be glucose. Three carbons, each carrying two hetero atoms, were observed at δ 101.8 (C-1'), δ 98.2 (C-21) and δ 91.7 (C-17). All these and other data indicated that the structure of ophiorine A (1) was shown by the formula 1, stereochemistry of which was clarified as follows.

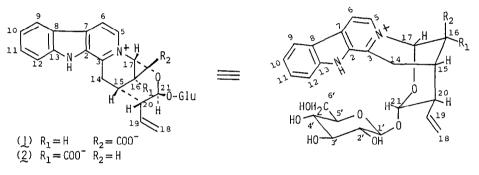


Chart 1

When $(\frac{1}{2})$ was methylated with diazomethane in methanol, simultaneous retro-Michael reaction occurred to give a known gluco indole alkaloid, lyaloside $(\frac{3}{2})$.⁵⁾ This observation allowed us to deduce stereochemical configurations at C_{15} (and therefore, C_{17}), C_{20} and C_{21} as depicted in the above structure $(\frac{1}{2})$. Stereochemistry of the last chiral centre, C_{16} , is described below in connection with the structure of the second alkaloid, ophiorine B $(\frac{2}{2})$.

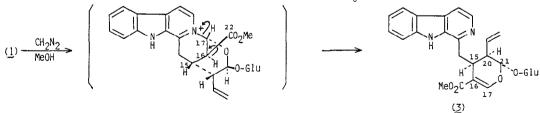
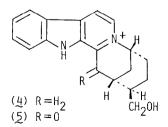


Chart 2

Ophiorine B (2) was isolated as pale yellow needles, mp 188-191°C, $[\alpha]_D$ +18.2°. The ¹H- and ¹³C-NMR data are shown in Table 1 and 2, respectively. We found that (2) was a stereoisomer of (1) concerning C₁₆, since methylation of (2) with diazomethane and subsequent work-up also gave rise to lyaloside (3). Assignment of configuration at C₁₆ was made on the basis of ¹³C-NMR evidence.

$^{\perp}$ H-NMR(270MHz,D ₂ O	$(270 \text{MHz}, D_2 \text{O})$		¹ H-NMR
--	----------------------------------	--	--------------------

	Ophiorine A (1)		Ophiorine B (2)			(ኒ)	(2)
	δ(ppm)	J(Hz)	δ(ppm)	J(Hz)		δ(ppm)	
н-5	8.47 (d)	6.3	8.49 (d)	6.6	C-2	134.8	135.6
Н-6	8.26 (d)	6.3	8.41 (d)	6.6	C-3	146.4	146.4
н-9	7.98 (d)	7.9	8.18 (d)	7.9	C-5	136.9	136.8
H-10	7.28 (br-t)	7.9	7.40 (br-t)	ca.8.0	C-6 C-7	135.9	135.8
н-11	7.62 (br-t)	ca.8.0	7.76 (br-t)	ca.8.0	C-8	122.1	121.9
H-12	7.45 (d)	8.5	7.66 (d)	8.6	C-9	124.6	124.6
	H-14a H-14b 3.68(lH,br-s)		3.69 (dd)	19.0,7.2	C-10		119.2
			3.85 (d)	19.0	C-11		125.5
H-15			3.22 (m)		C-12	115.4	115.3
H-16			3.19 (t-like)		C - 14		29.1
H-17			6.69 (br-s)		C-15		33.0
		1.7.0		17.0	C-16		47.4
	a 5.45 (d)	17.8	5.39 (br-d)	17.8	C-17		91.5 122.3
H-18	b 5.46 (d)	10.6	5.40 (br-d)	10.5	C-18	121.9	134.8
H-19	5.98 (ddd)	17.8,10.6 6.3	5.91 (ddd)	17.8,10.5 5.9	C-20	48.8	46.0
H-20	2.98 (m)		2.84 (m)		C-21 C-22		98.2 177.4
н-2]	4.72 (d)	9.9	4.68 (d)	9.6	C-1'		102.0
H-1'	4.55 (d)	7.9	4.48 (d)	7.9	C-2'	75.4	75.4 78.9 ^b
н-24	3.28 (t-like)		3.19 (t-like)		C-3'	78.8ª	78.9~
н-3			3.40 (t-like)		C-4' C-5'		72.2 78.3 ^b
н-4'			3.20 (t-like)		C-6'	63.3	63.2
н-5'		8.9,5.3	3.16 (ddd)	10.4,5.9		L	ا
	5.10 (add)	2.3	5110 (add)	ca.2.0	a,b; A	ssignme	nts are
н-6'	a 3.42 (dd)	12.5,5.3	3.39 (dd)	10.5,5.9	i :	ntercha	ngeable i
н-6'	b 3.54 (dd)	12.5,2.3	3.58 (dd)	10.5,ca.2.0	t t	he same	column.
		•			. ,		


Table 1

The signal due to C-20 of (1) was observed at δ 48.8, while that of (2) was at δ 46.0. This upfield shift of 2.8 ppm in (2) was ascribable to γ -effect due to C_{16} - α -substituent which is situated at a 1,3-diaxial position to the C_{20} hydrogen. Therefore, assignment of configuration at C_{16} of $(\frac{1}{2})$ and $(\frac{2}{2})$ was made as shown in the formula in Chart 1. Another proof for this stereochemical assignment was given by ¹H-NMR evidence. While all other peaks are very similar each other, a characteristic difference between (1) and (2) was observed in the peak

positions of H-16. (Table 1). The down field shift of H-16 in (1) was reasonably explained in terms of the deshilding anisotropic effect caused by the aromatic ring, in the plane of which this proton lies.

It is interesting to note that C-14 signal of (1) disappeared almost completely when 1^{3} C-NMR was taken in D_2O at an elevated temperature (60°C) or

Table 2

¹³C-NMR(67.8MHz,D₂O)

after keeping the solution for several days at room temperature. This was obviously caused by easy H/D exchange through the scheme shown in Chart 3. In fact, in these cases H-l4 signals in the 1 H-NMR spectra also disappeared. A similar observation has been reported by Hesse et al. for melinonine E (4), a new type alkaloid isolated from a Strychnos sp.⁶

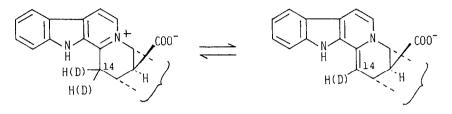


Chart 3

More than 20 gluco indole alkaloids have been found in nature.⁷⁾ Among them ophiorines A (1) and B (2) are unique for possessing N_(b) - C₁₇ linkage and β -carbolinium type structure. Biogenetic relationship between these alkaloids and melinonine E (4) or closely related strychnoxanthine (5)⁸⁾ arouses our interest.

ACKNOWLEDGEMENT : Financial support from Foundation for the Promotion of Research on Medicinal Resources is deeply appreciated.

REFERENCES AND NOTES

- 1) E. Fujita and A. Sumi, Yakugaku Zasshi, 87, 1153 (1967)
- 2) S. Tafur, J. D. Nelson, D. C. Delong and G. H. Svoboda, *Lloydia*, 39, 261 (1976)
- Details of the study on other constituents of this and other related species will be reported shortly.
- 4) E. Schritter, H. V. Huber, F. E. Bader and H. Zahnd, *Helv. Chim. Acta*, 37, 1912 (1954)
- 5) a) J. Levesque, J-L. Pousset and A. Cave, C. R. Acad. Sc. Paris, 280, 593 (1975); b) J. Levesque, R. Jacquesy and J. P. Foucher, Tetrahedron, 38, 1417 (1982)
- 6) R. P. Borris, A. Guggisberg and M. Hesse, Helv. Chim. Acta, 67, 455 (1984)
- R. S. Kapil and R. T. Brown, *The Alkaloids*, XVII, ed. by R. H. F. Manske and R. G. A. Rodrigo, Academic Press, New York, 1979, p. 545-588.
- C. Coune, D. Tavernier, M. Caprasse and L. Angenot, *Planta Medica*, 50, 93, (1984)

(Received in Japan 3 August 1985)